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Algorithm-Based Fault Tolerance for Dense Matrix Factorizations,
Multiple Failures and Accuracy
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Dense matrix factorizations, such as LU, Cholesky and QR, are widely used for scientific applications that re-
quire solving systems of linear equations, eigenvalues and linear least squares problems. Such computations
are normally carried out on supercomputers, whose ever-growing scale induces a fast decline of the Mean
Time To Failure (MTTF). This article proposes a new hybrid approach, based on Algorithm-Based Fault
Tolerance (ABFT), to help matrix factorizations algorithms survive fail-stop failures. We consider extreme
conditions, such as the absence of any reliable node and the possibility of losing both data and checksum
from a single failure. We will present a generic solution for protecting the right factor, where the updates
are applied, of all above mentioned factorizations. For the left factor, where the panel has been applied,
we propose a scalable checkpointing algorithm. This algorithm features high degree of checkpointing
parallelism and cooperatively utilizes the checksum storage leftover from the right factor protection. The
fault-tolerant algorithms derived from this hybrid solution is applicable to a wide range of dense matrix fac-
torizations, with minor modifications. Theoretical analysis shows that the fault tolerance overhead decreases
inversely to the scaling in the number of computing units and the problem size. Experimental results of LU
and QR factorization on the Kraken (Cray XT5) supercomputer validate the theoretical evaluation and con-
firm negligible overhead, with- and without-errors. Applicability to tolerate multiple failures and accuracy
after multiple recovery is also considered.
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1. INTRODUCTION

Today’s high-performance computers have paced into The Petaflops realm, through the
increase of system scale. The number of system components, such as CPU cores, mem-
ory, networking, and storage grow considerably. One of the most powerful Petaflop
scale machines, Kraken, from National Institute for Computational Sciences and
University of Tennessee, harnessed as many as 112,800 cores to reach its peak per-
formance of 1.17 Petaflops to rank No.11 on the November 2011 Top500 list.1 Even

1http://www.top500.org
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10:2 A. Bouteiller et al.

using accelerators, as in Titan, the current No.1, more than 18,688 accelerator boards
and supporting host processors are still necessary. With the increase of system scale
and chip density, the reliability and availability of such systems has declined. It has
been shown that, under specific circumstances, adding computing units might hamper
applications completion time, as a larger node count implies a higher probability of
reliability issues. This directly translates into a lower efficiency of the machine, which
equates to a lower scientific throughput [Streitz et al. 2006]. It is estimated that the
MTTF of High Performance Computing (HPC) systems might drop to about one hour
in the near future [Cappello 2009]. Without a drastic change at the algorithmic level,
such a failure rate will certainly prevent capability applications from progressing.

Exploring techniques for creating a software ecosystem and programming environ-
ment capable of delivering computation at extreme scale, which are both resilient and
efficient, will eliminate a major obstacle to scientific productivity on tomorrow’s HPC
platforms. In this work we advocate that in extreme scale environments, successful
approaches to fault tolerance (e.g., those which exhibit acceptable recovery times and
memory requirements) must go beyond traditional systems-oriented techniques and
leverage intimate knowledge of dominant application algorithms, in order to create a
middleware that is far more adapted and responsive to the application’s performance
and error characteristics.

While many types of failures can strike a distributed system [Schroeder and Gibson
2007], the focus of this article is on the most common representation: the fail-stop
model. In this model, a failure is defined as a process that completely and definitely
stops responding, triggering the loss of a critical part of the global application state.
To be more realistic, we assume a failure could occur at any moment and can affect
any part of the application’s data. We introduce a new generic hybrid approach based
on algorithm-based fault tolerance (ABFT) that can be applied to several ubiquitous
one-sided dense linear factorizations. Using one of these factorizations, namely LU
with partial pivoting, which is significantly more challenging due to pivoting, we theo-
retically prove that this scheme successfully applies to the three well known one-sided
factorizations, Cholesky, LU and QR. To validate these claims, we implement and eval-
uate this generic ABFT scheme with both the LU and QR factorizations. A significant
contribution of this work (which is an extension of Du et al. [2012]) is to protect the
part of the matrix below the diagonal (referred to as “the left factor” in the rest of
the text) during the factorization, which was hitherto never achieved. The extended
content covers the case of multiple simultaneous failures and presents an effective
protection scheme that uses 2f checksum blocks to protect against f simultaneous fail-
ures. Additionally, the resulting accuracy after multiple recoveries during the lifetime
of the application is experimentally assessed.

The rest of the article is organized as follows. Section 2 presents background and
prior work in the domain; Section 3 reviews the features of full factorizations. Section
4 discusses the protection of the right factor using the ABFT method. Section 5 reviews
the idea of vertical checkpointing and proposes the new checkpointing method to pro-
tect the left factor. Section 6 discusses an effective checksumming strategy to recover
from multiple simultaneous failures. Section 7 evaluates the performance, overhead
and accuracy of the proposed algorithm using the example of LU and QR, and Section
8 concludes the work.

2. ALGORITHM-BASED FAULT TOLERANCE BACKGROUND

The most well-known fault-tolerance technique for parallel applications, checkpoint-
restart (C/R), encompasses two categories, the system and application level. At the
system level, message passing middleware deals with faults automatically, without in-
tervention from the application developer or user [Bouteiller et al. 2010; Burns et al.

ACM Transactions on Parallel Computing, Vol. 1, No. 2, Article 10, Publication date: January 2015.



�

�

�

�

�

�

�

�
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1994]. At the application level, the application state is dumped to a reliable storage
when the application code mandates it. Even though C/R bears the disadvantage of
high overhead while writing data to stable storage, it is widely used nowadays by high
end systems [Katz et al. 2009]. To reduce the overhead of C/R, diskless checkpoint-
ing [Lu 2005; Plank et al. 1998] has been introduced to store checksum in memory
rather than stable storage. While diskless checkpointing has shown promising per-
formance in some applications (for instance, FFT in Elnozahy et al. [1992]), it exhibits
large overheads for applications modifying substantial memory regions between check-
points [Plank et al. 1998], as is the case with factorizations.

In contrast, Algorithm Based Fault Tolerance (ABFT) is based on adapting the algo-
rithm so that the application dataset can be recovered at any moment, without involv-
ing costly checkpoints. ABFT was first introduced to deal with silent error in systolic
arrays [Huang and Abraham 1984]. Unlike other methods that treat the recovery data
and computing data separately, ABFT approaches are based on the idea of maintaining
consistency of the recovery data, by applying appropriate mathematical operations on
both the original and recovery data. Typically, for linear algebra operations, the input
matrix is extended with supplementary columns and/or rows containing checksums.
This initial encoding happens only once; the matrix algorithms are designed to work
on the encoded checksum along with matrix data, similar mathematical operations
are applied to both the data and the checksum so that the checksum relationship is
kept invariant during the course of the algorithm. Should some data be damaged by
failures, it is then possible to recover the application by inverting the checksum opera-
tion to recreate missing data. The overhead of ABFT is usually low, since no periodical
global checkpoint or rollback-recovery is involved during computation and the com-
putation complexity of the checksum operations scales similarly to the related matrix
operation (and the ratio of extra computation is small and asymptotically tends toward
zero). ABFT and diskless checkpointing have been combined to apply to basic matrix
operations like matrix-matrix multiplication [Bosilca et al. 2009; Chen and Dongarra
2006a, 2006b, 2008] and have been implemented on algorithms similar to those of
ScaLAPACK [Choi et al. 1996], which is widely used for dense matrix operations on
parallel distributed memory systems.

Recently, ABFT has been applied to the High Performance Linpack (HPL) [Davies
et al. 2011] and to the Cholesky factorization [Hakkarinen and Chen 2010]. Both
Cholesky and HPL have the same factorization structure, where only half of the fac-
torization result is required, and the update to the trailing matrix is based on the fact
that the left factor result is a triangular matrix. This approach, however, does not nec-
essarily apply to other factorizations, like QR where the left factor matrix is full, nor
when the application requires both the left and right factorization results. Also, LU
with partial pivoting, when applied to the lower triangular L, potentially changes the
checksum relation and renders basic checkpointing approaches useless, when check-
sums are computed along the intuitive column-wise direction.

The generic ABFT framework for matrix factorizations we introduce in this work
can be applied not only to Cholesky and HPL, but also to LU and QR. The right fac-
tor is protected by a traditional ABFT checksum, while the left factor is protected
by a novel vertical checkpointing scheme, making the resulting approach an hybrid
between ABFT and algorithm driven checkpointing. Indeed, this checkpointing al-
gorithm harnesses some of the properties of the factorization algorithm to exchange
limited amount of rollback with the ability to overlap the checkpointing of several
panel operations running in parallel. Other contributions of this work include cor-
rectness proofs and overhead characterization for the ABFT approach on the most
popular 2D-block cyclic distribution (as opposed to the 1D distributions used in previ-
ous works). These proofs consider the effect of failures during critical phases of the
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10:4 A. Bouteiller et al.

Fig. 1. Steps applied to the input matrix in an iteration of the LU factorization; Green: Just finished; Red
& Orange: being processed; Gray: Finished in previous iterations.

algorithm, and demonstrate that recovery is possible without suffering from error
propagation.

3. FULL FACTORIZATIONS OF MATRIX

In this work, we consider the case of factorizations where the lower triangular part
of the factorization result matters, as is the case in QR and LU with pivoting. For
example, the left factor Q is required when using QR to solve the least square prob-
lem, and so is L when solving Akx = b with the “LU factorization outside the loop”
method [Golub and Van Loan 1996]. In the remaining of this section, we recall the
main algorithm of the most complex case of one-sided factorization, block LU with piv-
oting. Additionally, we highlight challenges specific to this type of algorithms, when
compared to algorithms studied in previous works.

Figure 1 presents the diagram of the basic operations applied to the input matrix
to perform the factorization. The block LU factorization algorithm can be seen as a
recursive process. At each iteration, the panel factorization is applied on a block col-
umn. This panel operation factorizes the upper square (selecting adequate pivots and
applying internal row swapping as necessary to ensure numerical stability), and scales
the lower polygon accordingly. The output of this panel is used to apply row swapping
to the result of previous iterations, on the left, and to the trailing matrix on the right.
The triangular solver is applied to the right of the factored block to scale it accordingly,
and then the trailing matrix is updated by applying a matrix-matrix multiply update.
Then the trailing matrix is used as the target for the next iteration of the recursive
algorithm, until the trailing matrix is empty. Technically, each of these basic steps is
usually performed by applying a parallel Basic Linear Algebra Subroutine (PBLAS).

The structure of the other one-sided factorizations, Cholesky and QR, are similar
with minor differences. Both QR and Cholesky can maintain adequate numerical sta-
bility without pivoting (and according swapping operations). The structure of the block
QR and LU with pivoting factorization is identical, only the computational kernels
differ. The structure of the block Cholesky factorization is similar, with the notable
difference that the trailing matrix update involves only the upper right triangle (the
lower left triangle is symmetric and is therefore omitted to spare space and computa-
tion). In the case of LU and QR, however, the upper left and lower right factors are
distinct. There are a significant number of applications, like iterative refinement and
algorithms for eigenvalue problems, where the entire factorization result is needed, in-
cluding the lower left factor, henceforth commanding adequate protection for this part
of the result as well.

4. PROTECTION OF THE RIGHT FACTOR MATRIX WITH ABFT

Our focus is on providing an algorithm that protects both the upper right and the
lower left factors, as the factorization unfolds. In this section, we detail the ABFT
approach that is used to protect the upper triangle from failures, while considering the
intricacies of typical block cyclic distributions and failure detection delays.

ACM Transactions on Parallel Computing, Vol. 1, No. 2, Article 10, Publication date: January 2015.
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4.1. Checksum Relationship

ABFT approaches are based upon the principle of keeping an invariant bijective rela-
tionship between protective supplementary blocks and the original data through the
execution of the algorithm, by the application of numerical updates to the checksum.
In order to use ABFT for matrix factorization, an initial checksum is generated before
the actual computation starts. In future references we use G to refer to the generator
matrix, and A to the original input matrix. The checksum C for A is produced by

C = GA or C = AG. (1)

When G is all-1 vector, the checksum is simply the sum of all data items from a
certain row or column. Referred to as the checksum relationship, (1) can be used at
any step of the computation for checking data integrity (by detecting mismatching
checksum and data) and recovery (inverting the relation builds the difference be-
tween the original and the degraded dataset). With the type of failures we consider
(Fail-Stop), data cannot be corrupted, so we will use this relationship to implement the
recovery mechanism only. This relationship has been shown separately for Cholesky
[Hakkarinen and Chen 2010], and HPL [Davies et al. 2011], both sharing the property
of updating the trailing matrix with a lower triangular matrix. However, in this work
we consider the general case of matrix factorization algorithms, including those where
the full matrix is used for trailing matrix updates (as is the case for QR and LU with
partial pivoting). In this context, the invariant property has not been demonstrated;
we will now demonstrate that it holds for full matrix based updates algorithms as well.

4.2. Checksum Invariant with Full Matrix Update

In Luk and Park [1988], ZU is used to represent a matrix factorization (optionally with
pairwise pivoting for LU), where Z is the left matrix (lower triangular in the case of
Cholesky or full for LU and QR) and U is an upper triangular matrix. The factorization
is then regarded as the process of applying a series of matrices Zi to A from the left
until ZiZi−1 · · · Z1A becomes upper triangular.

THEOREM 4.1. Checksum relationship established before ZU factorization is main-
tained during and after factorization.

PROOF. Suppose data matrix A ∈ R
n×n is to be factored as A = ZU, where

Z and U ∈ R
n×n and U is an upper triangular matrix. A is checkpointed using gen-

erator matrix G ∈ R
n×nc, where nc is the width of checksum. To factor A into upper

triangular form, a series of transformation matrices Zi is applied to A (with partial
pivoting in LU).

Case 1: No Pivoting.

U = ZnZn−1 . . . Z1A. (2)

Now the same operation is applied to Ac = [
A, AG

]

Uc = ZnZn−1 . . . Z1
[
A, AG

]
= [

ZnZn−1 . . . Z1A, ZnZn−1 . . . Z1AG
]

= [
U, UG

]
. (3)

ACM Transactions on Parallel Computing, Vol. 1, No. 2, Article 10, Publication date: January 2015.
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For any k ≤ n, using Uk to represent the result of U at step k,

Uk
c = ZkZk−1 . . . Z1

[
A, AG

]
= [

ZkZk−1 . . . Z1A, ZkZk−1 . . . Z1AG
]

=
[
Uk, UkG

]
. (4)

Case 2: With partial pivoting.

Uk
c = ZkPkZk−1Pk−1 . . . Z1P1

[
A, AG

]
= [

ZkPkZk−1Pk−1 . . . Z1P1A,

ZkPkZk−1Pk−1 . . . Z1P1AG
]

=
[
Uk, UkG

]
. (5)

Therefore the checksum relationship holds for LU with partial pivoting, Cholesky
and QR factorizations.

4.3. Checksum Invariant in Block Algorithms

Theorem 4.1 shows the mathematical checksum relationship in matrix factorizations.
However, in production, HPC factorizations are performed in block algorithms, and
execution is carried out in a recursive way. Linear algebra packages, like ScaLAPACK,
consist of several function components for each factorization. For instance, LU has a
panel factorization, a triangular solver and a matrix-matrix multiplication. We need
to ensure that the checksum relationship also holds for block algorithms, both at the
end of each iteration, and after the factorization is completed.

THEOREM 4.2. For ZU factorization in block algorithm, checksum at the end of each
iteration only covers the upper triangular part of data that has already been factored
and are still being factored in the trailing matrix.

PROOF. Input Matrix A is split into blocks of data of size nb × nb (Aij, Zij, Uij), and
the following stands:[

A11 A12 A13
A21 A22 A23

]
=

[
Z11 Z12
Z21 Z22

] [
U11 U12 U13

0 U22 U23

]
, (6)

where A13 = A11 + A12, and A23 = A21 + A22.
Since A13 = Z11U13 + Z12U23, and A23 = Z21U13 + Z22U23, and using the relation⎧⎪⎪⎨

⎪⎪⎩

A11 = Z11U11
A12 = Z11U12 + Z12U22
A21 = Z21U11
A22 = Z21U12 + Z22U22

in (6), we have the following system of equations:{
Z21(U11 + U12 − U13) = Z22(U23 − U22)

Z11(U11 + U12 − U13) = Z12(U23 − U22).

This can be written as: [
Z11 Z12
Z21 Z22

] [
U11 + U12 − U13

−(U23 − U22)

]
= 0.

ACM Transactions on Parallel Computing, Vol. 1, No. 2, Article 10, Publication date: January 2015.
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Fig. 2. Example of a 2D block-cyclic data distribution.

For LU, Cholesky and QR,
[
Z11 Z12
Z21 Z22

]
is always nonsingular, so

[
U11 + U12 − U13

U23 − U22

]
= 0,

and
{

U11 + U12 = U13
U23 = U22

.

This shows that after ZU factorization, checksum blocks cover the upper triangular
matrix U only, even for the diagonal blocks. At the end of each iteration, for example
the first iteration in (6), Z11, U11, Z21 and U12 are completed, and U13 is already U11 +
U12. The trailing matrix A22 is updated with

A22
′ = A22 − Z21U12 = Z22U22,

and A23 is updated to

A23
′ = A23 − Z21U13

= A21 + A22 − Z21(U11 + U12)

= Z21U11 + A22 − Z21U11 − Z21U12

= A22 − Z21U12 = Z22U22.

Therefore, at the end of each iteration, data blocks that have already been and are still
being factored remain covered by checksum blocks.

4.4. Issues with Two-Dimensional Block-Cyclic Distribution

It has been well established that data layout plays an important role in the perfor-
mance of parallel matrix operations on distributed memory systems [Choi et al. 1996;
Kumar et al. 1994]. In 2D block-cyclic distributions, data is divided into equally sized
blocks, and all computing units are organized into a virtual two-dimension grid P by
Q. Each data block is distributed to computing units in round robin following the two
dimensions of the virtual grid. Figure 2 is an example of a P = 2, Q = 3 grid applied
to a global matrix of 4 × 4 blocks. The same color represents the same process while
numbering in Aij indicates the location in the global matrix. This layout helps with load
balancing and reduces data communication frequency, because in each step of the algo-
rithm, many computing units can be engaged in computations concurrently, and com-
munications pertaining to blocks positioned on the same unit can be grouped. Thanks
to these advantages, many prominent software libraries (like ScaLAPACK [Choi et al.
1996]) assume a 2D block-cyclic distribution.

However, with a 2D block-cyclic data distribution, the failure of a single process,
usually a computing node which keeps several noncontiguous blocks of the matrix,
results in holes scattered across the whole matrix. Figure 3 is an example of a 5 × 5
blocks matrix (on the left) with a 2 × 3 process grid. Red blocks represent holes caused

ACM Transactions on Parallel Computing, Vol. 1, No. 2, Article 10, Publication date: January 2015.
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by the failure of the single process (1, 0). In the general case, these holes can impact
both checksum and matrix data at the same time.

4.5. Checksum Protection Against Failure

Our algorithm works under the assumption that any process can fail and therefore the
data, including the checksum, can be lost. Rather than forcing checksum and data on
different processes and assuming only one would be lost, as in Davies et al. [2011], we
put checksum and data together in the process grid and design the checksum protec-
tion algorithm accordingly.

4.5.1. Minimum Checksum Amount for Block Cyclic Distributions. Theoretically, the sum-
based checksum C of a series of N blocks Ai, 1 ≤ i ≤ N, where N is the total number of
blocks in one row/column of the matrix, is computed by:

C =
N∑

i=1

Ai. (7)

With the 2D block-cyclic distribution, a single failure punches multiple holes in the
global matrix. With more than one hole per row/column, C in (7) is not sufficient to
recover all lost data. A slightly more sophisticated checksum scheme is required.

THEOREM 4.3. Using sum-based checkpointing, for N data items distributed in
block-cyclic onto Q processes, the size of the checksum to recover from the loss of one
process is �N

Q �
PROOF. With 2D block-cyclic, each process gets �N

Q � items. At the failure of one
process, all data items in the group held by the process are lost. Take data item ak,
1 ≤ k ≤ �N

Q �, from group j, 1 ≤ j ≤ Q. To be able to recover ak, any data item in group j
cannot be used, so at least one item from another group is required to create the check-
sum, and this generates one additional checksum item. Therefore for all items in group
j, �N

Q � checksum items are generated so that any item in group j can be recovered.

Applying this theorem, we have the following checksum algorithm: Suppose Q pro-
cesses are in a process column or row, and let each process have K blocks of data of size
nb×nb. Without loss of generality, let K be the largest number of blocks owned by any
of the Q processes. From Theorem 4.3, the size of the checksum in this row is K blocks.

Let Ck be the kth checksum item, and Aj
k, be the kth data item on process j, 1 ≤ k ≤

�N
Q �, 1 ≤ j ≤ Q:

Ck =
Q∑

j=1

Aj
k. (8)

Under (8), we have the following corollary.

COROLLARY 4.4. The kth block of checksum is calculated using the kth block of data
of each process having at least k blocks.

4.5.2. Checksum Duplicates. Since ABFT checksum is stored by regular processors, it
has to be considered as fragile as the matrix data. From Theorem 4.3 and using the
same N and Q, the total number of checksum blocks is K = �N

Q �. These checksum

ACM Transactions on Parallel Computing, Vol. 1, No. 2, Article 10, Publication date: January 2015.
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Fig. 3. Holes in a checksum protected matrix caused by a single failure and the naive checksum duplication
protection scheme (3x2 process grid).

blocks can be appended to the bottom or to the right of the global data matrix accord-
ingly, and since checksum is stored on computing processes, these K checksum blocks
are distributed over min (K, Q) processes (see Figure 3). If a failure strikes any of these
processes, like (1, 0) in this example, some checksum is lost and cannot be recovered.
Therefore, checksum itself needs protection; as a first approach, duplication is used to
protect checksum from failure.

A straightforward way of performing duplication is to make a copy of the entire
checksum block, as illustrated by the two rightmost columns in Figure 3. While simple
to implement, this method suffers from two major defects. First, if the checksum width
K is a multiple of Q (or P for column checksum), the duplicate of a checksum block
is located on the same processor, defeating the purpose of duplication. This could be
solved at the cost of introducing an extra empty column in the process grid to resolve
the mapping conflict. More importantly, to maintain the checksum invariant property,
it is required to apply the trailing matrix update on the checksum (and its duplicates)
as well. From Corollary 4.4, once all the kth block columns on each process have fin-
ished the panel factorization (in Q step), the kth checksum block column is no longer
active in any further computation (except pivoting) and should be excluded from the
computing scope to reduce the ABFT overhead. This is problematic, as this results
in updates applying to noncontiguous local matrices (containing now inactive check-
sum columns), and splitting the PBLAS calls, to avoid excluded columns, increases
the communication volume and has a significant impact on the trailing matrix update
efficiency.

4.5.3. Reverse Neighboring Checksum Storage. In the previous paragraph, we described
the specific challenges posed by the maintenance of checksums during the factoriza-
tion, hinting the crucial role of checksum storage location on efficiency. From this ob-
servation, we propose the following reverse neighboring checksum duplication method
that allows for applying the update in a single PBLAS call without incurring extrane-
ous computation.

Figure 4 is an example of the reverse neighboring checksum method on a 2 × 3 grid.
The data matrix has 8×8 blocks and therefore the size of checksum is 8×3 blocks with
an extra 8×3 blocks copy. The arrows indicate where checksum blocks are stored on the
right of the data matrix, according to the reverse storage scheme. For example, in the
LU factorization, the first 3 block columns produce the checksum in the last two block
columns (hence making 2 duplicate copies of the checksum); the next 3 block columns
then produce the next 2 rightmost checksum columns, etc. Because copies are stored
in consecutive columns of the process grid, for any 2D grid with Q > 1, the check-
sum duplicates are guaranteed to be stored on different processors. The triangular
solve (TRSM) and trailing matrix update (GEMM) are applied to the whole checksum
area until the first three columns are factored. In following factorization steps, the two
last block columns of checksum are excluded from the TRSM and GEMM scope. Since

ACM Transactions on Parallel Computing, Vol. 1, No. 2, Article 10, Publication date: January 2015.
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Fig. 4. Reverse neighboring checksum storage, with two checksum duplicates per Q-wide groups.

Algorithm 1 Checksum Management
On a P × Q grid, matrix is M × N, block size is NB × NB
Ck represents the kth checksum block column
Ak represents the kth data block column
Before factorization:
Generate the initial checksum:

Ck = ∑(k−1)×Q+Q
j=(k−1)×Q+1 Aj, k = 1, · · · ,

⌈
N

NB×Q

⌉
For each of Ck, make a copy of the whole block column and put right next to its original block
column
Checksum Ck and its copy are put in the kth position starting from the far right end
Begin factorization

Host algorithm starts with an initial scope of M rows and N +
⌈

N
Q

⌉
columns

For each Q panel factorizations, the scope decreases M rows and 2 × NB columns
End factorization

TRSM and GEMM claim most of the computation in the LU factorization, shrinking
the update scope greatly reduces the overhead of the ABFT mechanism by diminish-
ing the amount of (useless) extra computations; meanwhile, the efficiency of the up-
date operation itself remains optimal as, thanks to the reverse storage scheme, the
update still operates on a contiguous memory region and can be performed by a single
PBLAS call.

Last, one can note that the iteration when the update scope is reduced is the same
as when only the upper part of the checksum remains useful (for recovering the upper
part of the matrix). The lower part of the checksum becomes invalid at this iteration,
henceforth it is never referenced again during the following iterations (neither during
computation or recovery). We will explain in the next section how this extra storage
can be leveraged to protect the lower triangular part of the matrix.

4.6. Delayed Recovery and Error Propagation

In this work, we assume that a failure can strike at any moment during the life span
of factorization operations or even the recovery process. Theorem 4.2 proves that at
the moment where the failure happens, the checksum invariant property is satisfied,
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Algorithm-Based Fault Tolerance for Dense Matrix Factorizations 10:11

Fig. 5. Ghost pivoting Issue. Gray: Result in previous steps; Light Green: Panel factorization result in
current step; Deep Green: The checksum that protects the light green; Blue: TRSM zone; Yellow: GEMM
zone; Red: one of the columns affected by pivoting.

meaning that the recovery can proceed successfully. However, in large scale systems,
which are asynchronous by nature, the time interval between the failure and the mo-
ment when it is detected by other processes is unknown, leading to delayed recoveries,
with opportunities for error propagation.

The ZU factorization is composed of several subalgorithms that are called on dif-
ferent parts of the matrix. Matrix multiplication, which is used for trailing matrix
updates and claims more than 95% of the execution time, has been shown to be ABFT
compatible [Bosilca et al. 2009] , that is to compute the correct result even with de-
layed recovery. One feature that has the potential to curb this compatibility is pivoting,
in LU, especially when a failure occurs between the panel factorization and the row
swapping updates, there is a potential for destruction of rows in otherwise unaffected
blocks.

Figure 5 shows an example of such a case. Suppose the current panel contributes to
the ith column of checksum. When panel factorization finishes, the ith column becomes
intermediate data which does not cover any column of matrix. If a failure at this in-
stant causes holes in the current panel area, then lost data can be recovered right
away. Pivoting for this panel factorization has only been applied within the light green
area. Panel factorization is repeated to continue on the rest of the factorization. How-
ever, if failure causes holes in other columns that also contribute to the ith column of
checksum, these holes cannot be recovered until the end of the trailing matrix update.
To make it worse, after the panel factorization, pivoting starts to be applied outside
the panel area and can move rows in holes into healthy area or vice versa, extending
the recovery area to the whole column, as shown in red in Figure 5 including trian-
gular solving area. To recover from this case, in addition to matrix multiplication, the
triangular solver is also required to be protected by ABFT.

THEOREM 4.5. Failure in the right-hand sides of triangular solver can recover from
fail-stop failure using ABFT.

PROOF. Suppose A is the upper or lower triangular matrix produced by LU factor-
ization (nonblocked in ScaLAPACK LU), B is the right-hand side, and the triangular
solver solves the equation Ax = B.
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10:12 A. Bouteiller et al.

Fig. 6. Separation of lower and upper areas protected by checksum (green) and checkpoint (yellow) during
the course of the factorization algorithm.

Supplement B with checksum generated by Bc = B∗Gr to extended form B̂ = [B, Bc],
where Gr is the generator matrix. Solve the extended triangular equation:

Axc = Bc = [B, Bc]
∴ xc = A−1 × [B, Bc]

=
[
A−1B, A−1Bc

]

=
[
x, A−1BGr

]

= [
x, xGr

]
.

Therefore, data in the right-hand sides of the triangular solver is protected
by ABFT.

With this theorem, if failure occurs during triangular solving, lost data can be recov-
ered when the triangular solver completes. Since matrix multiplication is also ABFT
compatible, the whole red region in Figure 5 can be recovered after the entire trailing
matrix update is done, leaving the opportunity for failure detection and recovery to be
delayed at a convenient moment in the algorithm.

5. PROTECTION OF THE LEFT FACTOR MATRIX WITH Q-PARALLEL CHECKPOINT

It has been proven in Theorem 4.2 that the checksum covers only the upper triangular
part of the matrix until the current panel, and the trailing matrix is subject to future
updates. This is depicted in Figure 6, where the green checksum on the right of the
matrix protects exclusively the green part of the matrix. Another mechanism must be
added for the protection of the left factor (the yellow area).

5.1. Impracticability of ABFT for Left Factor Protection

The most straightforward idea, when considering the need of protecting the lower tri-
angle of the matrix, is to use an approach similar to the one described above, but
column-wise. Unfortunately, such an approach is difficult, if not impossible in some
cases, as proved in the remaining of this section.

5.1.1. Pivoting and Vertical Checksum Validity. In LU, partial pivoting prevents the left
factor from being protected through ABFT. The most immediate reason is as follow:
The PBLAS kernel used to compute the panel factorization (see Figure 1) performs si-
multaneously the search for the best pivot in the column and the scaling of the column
with that particular pivot. If applied directly on the matrix and the checksum blocks,
similarly to what the trailing update approach does, checksum elements are at risk of
being selected as pivots, which results in exchanging checksum rows into the matrix.
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This difficulty could be circumvented by introducing a new PBLAS kernel that does
not search for pivots in the checksum.

Unfortunately, legitimate pivoting would still break the checksum invariant prop-
erty, due to row swapping. In LU, for matrix A,

A =
(

A11 A12
A21 A22

)
=

(
L11 0
L21 L22

) (
U11 U12

0 U22

)

=
(

L11U11 L11U12
L21U11 L21U12 + L22U22

)
. (9)

Then panel factorization is

(
A11
A21

)
=

(
L11U11
L21U11

)
=

(
L11
L21

)
U11. (10)

To protect L11 and L21, imagine that we maintain a separate checksum, stored at
the bottom of the matrix, as shown in the yellow bottom rectangle of Figure 6, that
we plan on updating by scaling it accordingly to the panel operation. In this vertical
checksum, each P tall group of blocks in the 2D block cyclic distribution is protected by
a particular checksum block. Suppose rows i1 and i2 reside on blocks ki1 and kj1 of two
processes. It is not unusual that ki1 	= kj1 . By Corollary 4.4, block ki1 and kj1 contribute
to column-wise checksum block ki1 and kj1 respectively in the column that local blocks
ki1 and kj1 belong to. This relationship is expressed as

row i1 
→ checksum block ki1
row j1 
→ checksum block kj1 ,

where 
→ reads “contributes to”. After the swapping, the relationship should be
updated to

row i1 
→ checksum block kj1
row j1 
→ checksum block ki1 .

This requires a regeneration of checksum blocks ki1 and kj1 in order to maintain the
checkpoint validity. Considering there are nb potential pivoting operations per panel,
hence a maximum of nb+1 checksum blocks to discard, this operation has the potential
to be as expensive as computing a complete vertical checkpoint.

5.1.2. QR Factorization. Although QR has no pivoting, it still cannot benefit from ABFT
to cover Q, as we prove in the following text.

THEOREM 5.1. Q in Householder QR factorization cannot be protected by perform-
ing factorization along with the vertical checksum.

PROOF. Append a m×n nonsingular matrix A with checksum GA of size c×n along

the column direction to get matrix Ac =
[

A
GA

]
. G is c × m generator matrix. Suppose A

has a QR factorization Q0R0.
Obtain the QR factorization of Ac:[

A
GA

]
= QcRc =

[
Qc11 Qc12
Qc21 Qc22

] [
Rc11
∅

]
.
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10:14 A. Bouteiller et al.

Qc11 is m × m and Qc21 is c × m. Rc is m × n and ∅ represents c × n zero matrix. Rc 	= 0
and is full rank. Because Rc is upper triangular with nonzero diagonal elements and
therefore nonsingular.

QcQT
c =

[
Qc11 Qc12
Qc21 Qc22

] [
QT

c11 QT
c21

QT
c12 QT

c22

]
= I.

Therefore,

Qc11QT
c11 + Qc12QT

c12 = I. (11)

Since A = Qc11Rc11 and Rc11 is nonsingular, then Qc11 	= 0 and is nonsingular.
Assume Qc12 = 0. Qc11QT

c21 + Qc12QT
c22 = 0, therefore Qc11QT

c21 = 0. We have shown
that Qc11 is nonsingular, so QT

c21 = 0 and this conflicts with GA = Qc21Rc11 	= 0, so the
assumption Qc12 = 0 does not hold. From Equation 11, Qc11QT

c11 	= I. This means even
though A = Qc11Rc11, Qc11Rc11 is not a QR factorization of A.

5.2. Panel Checkpointing

Given that the ZU factorization cannot protect Z by applying ABFT in the same way
as for U, separate efforts are needed. For the rest of this article, we use the term
“checksum” to refer to the ABFT checksum, generated before the factorization, that is
maintained by the application of numerical updates during the course of the algorithm,
in contrast to “checkpointing” for the operation that creates a new protection block
during the course of the factorization. LU factorization with partial pivoting being the
most complex problem, it is used here for the discussion. The method proposed in this
section can be applied to the QR factorization with minimal efforts nonetheless.

In a ZU block factorization using 2D cyclic distribution, once a panel of Z is gen-
erated, it is stored into the lower triangular region of the original matrix. For exam-
ple, in LU, vectors of L, except the diagonal ones, are stored in L. In QR, vectors v
that are used to generate the elementary reflectors are stored. These lower triangular
parts from the panel factorization are final results, and are not subject to further up-
dates during the course of the algorithm, except for partial pivoting row swapping in
LU. Therefore only one vertical checkpointing “should be” necessary to maintain each
panel’s safety, as is discussed in Davies et al. [2011]. We will show how this idea, while
mathematically trivial, needs to be refined to support partial pivoting. We will then
propose a novel checkpointing scheme, leveraging properties of the block algorithm to
checkpoint Z in parallel, that demonstrates a much lower overhead when compared to
this basic approach.

5.3. Postponed Left Pivoting

Although once a panel is factored, it is not changed until the end of the computation,
row swaps incurred by pivoting are still to be applied to the left factor as the algorithm
progresses in the trailing matrix, as illustrated in Figure 1. The second step (pivoting
to the left) swaps two rows to the left of the current panel. The same reasoning as
presented in Section 5.1.1 holds, meaning that the application of pivoting row swaps
to the left factor has the potential to invalidate checkpoint blocks. Since pivoting to the
left is carried out in every step of LU, this causes significant checkpoint maintenance
overhead.

Unlike pivoting to the right, which happens during updates and inside the panel
operation, whose result are reused in following steps of the algorithm, pivoting to the
left can be postponed. The factored L is stored in the lower triangular part of the
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Algorithm-Based Fault Tolerance for Dense Matrix Factorizations 10:15

matrix without further usage during the algorithm. As a consequence, we delay the
application of all left pivoting to the end of the computation, in order to avoid expensive
checkpoint management. We keep track of all pivoting that should have been applied
to the left factor, and when the algorithm has completed, all row swaps are applied
just in time before returning the end-result of the routine.

5.4. Q-Parallel Checkpointing of Z

The vertical checkpointing of the panel result requires a set of reduction operations
immediately after each panel factorization. Panel factorization is on the critical path
and has lower parallelism, compared to other routines of the factorization (such as
trailing matrix update). The panel factorization works only on a single block column of
the matrix, hence benefits from only a P degree of parallelism, in a P × Q process grid.
Checkpointing worsens this situation, because it applies to the same block column,
and is bound to the same low level of exploitable parallelism. Furthermore, the check-
pointing cannot be overlapped with the computation of the trailing matrix update: all
processes who do not appear on the same column of the process grid are waiting in
the matrix-matrix multiply PBLAS, stalled because they require the panel column to
enter the call in order for the result of the panel to be broadcasted. If the algorithm
enters the checkpointing routine before going into the trailing update routine, the en-
tire update is delayed. If the algorithm enters the trailing update before starting the
checkpointing, the checksum is damaged in a way that prevents recovering that panel,
leaving it vulnerable to failures.

Our proposition is then twofold: we protect the content of the blocks before the panel,
which then enables starting immediately the trailing update without jeopardizing the
safety of the panel result. Then, we wait until sufficient checkpointing is pending to
benefit from the maximal parallelism allowed by the process grid.

5.4.1. Enabling Trailing Matrix Update Before Checkpointing. The major problem with en-
abling the trailing matrix update to proceed while the checkpointing of the panel is
not finished is that the ABFT protection of the update modifies the checksum in a
way that disables protection for the panel blocks. To circumvent this limitation, in a
P × Q grid, processes are grouped by sections of width Q, that are called a panel scope.
When the panel operation starts applying to a new section, the processes of this panel
scope make a local copy of the impending column and the associated checksum, called
a snapshot. This operation involves no communication, and features the maximum
P × Q parallelism. The memory overhead is limited, as it requires only the space for
at most two extra columns to be available at all time, one for saving the state before
the application of the panel to the target column, and one for the checksum column
associated to these Q columns. The algorithm then proceeds as usual, without waiting
for checkpoints before entering the next Q trailing updates. Because of the availabil-
ity of this extra protection column, the original checksum can be modified to protect
the trailing matrix without threatening the recovery of the panel scope, which can roll
back to that previous dataset should a failure occur.

5.4.2. Q-Parallel Checkpointing. When a panel scope is completed, the P × Q group of
processes undergo checkpointing simultaneously. Effectively, P simultaneous check-
pointing reductions are taking place along the block rows, involving the Q processes of
that row to generate a new protection block. This scheme enables the maximum par-
allelism for the checkpoint operation, hence decreasing its global impact on the failure
free overhead. Another strong benefit is that it scales with the process grid perfectly,
whereas regular checkpointing suffers from scaling with the square root of the number
of processes (as it involves only one dimension of the process grid).
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5.4.3. Optimized Checkpoint Storage. According to Corollary 4.4, starting from the first
block column on the left, every Q block columns contribute to one block column of
checksum, which means that once the factorization is done for these Q block columns,
the corresponding checksum block column becomes useless (it does not protect the
trailing matrix anymore, it has never protected the left factor, see Theorem 4.2). There-
fore, this checksum storage space is available for storing the resultant checkpoint block
generated to protect the panel result. Following the same policy as the checksum stor-
age, discussed in Section 4.5.2, the checkpoint data is stored in reverse order from the
right of the checksum (see Figure 4). As this part of the checksum is excluded from
the trailing matrix update, the checkpoint blocks are not modified by the continued
operation of the algorithm.

5.4.4. Recovery. The hybrid checkpointing approach requires a special recovery algo-
rithm. Two cases are considered. First, when failure strikes during the trailing up-
date, immediately after a panel scope checkpointing. For this case, the recovery is not
attempted until the current step of the trailing update is done. When the recovery
time comes, the checksum/checkpointing on the right of the matrix matches the ma-
trix data as if the initial ABFT checksum had just been performed. Therefore any lost
data blocks can be recovered by the simple reverse application of the ABFT checksum
relationship.

The second case is when a failure occurs during the Q panel factorization, before
the checkpointing for this panel scope can successfully finish. In this situation, all
processes revert the panel scope columns to the snapshot copy. Holes in the snapshot
data are recreated by using the snapshot copy of the checksum, applying the usual
ABFT recovery. The algorithm is resumed in the panel scope, so that panel and updates
are applied again within the scope of the Q wide section; updates outside the panel
scope are discarded, until the prefailure iteration has been reached. Outside the panel
scope, regular recovery mechanisms are deployed (ABFT checksum inversion for the
trailing matrix, checkpoint recovery for the left factor). When the refactorization of
panels finishes, the entire matrix, including the checksum, is recovered back to the
correct state. The computation then resumes from the next panel factorization, after
the failing step.

Figure 7 shows an example of the recovery when the process (1,0) in a 2 × 3 grid
failed. It presents the difference between the correct matrix dataset and the current
dataset during various steps of failure recovery as a “temperature map,” brighter colors
meaning large differences and black insignificant differences. The matrix size is 80 ×
80 and NB = 10, therefore the checksum size is 80 × 60. Failure occurs after the
panel factorization starting at (41,41) is completed, within the Q = 3 panel scope.
First, using a fault tolerant MPI infrastructures, like FT-MPI [Fagg et al. 2004], the
failed process (0,1) is replaced and reintegrates the process grid with a blank dataset,
showing as evenly distributed erroneous blocks (A). Then the recovery process starts
by mending the checksum using duplicates (B). The next step recovers the data which
is outside the current panel scope (31:80,31:60), using the corresponding checksum
for the right factor, and the checkpoints for the left factor (C). At this moment, all the
erroneous blocks are repaired, except those in the panel scope (41:80, 41:50). Snapshots
are applied to the three columns of the panel scope (31:80,31:60). Since these do not
match the state of the matrix before the failure, but a previous state, this area appears
as very different (D). Panel factorization is relaunched in the panel scope, in the area
(31:80,31:60), with the trailing update limited within this area. This refactorization
continues until it finishes panel (41:80,41:50) and by that time the whole matrix is
recovered to the correct state (not presented, all black). The LU factorization can then
proceed normally.
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Fig. 7. Recovery example (matrix size 800 × 800, grid size 2 × 3, failure at process (0,1), step:41). A: Failure
occurs; B: Checksum recovered; C: Data recovered using ABFT checksum and checkpointing output; D:
Three panels restored using snapshots.

6. EXTENSION TO MULTIPLE FAILURES

To evaluate the extension of this ABFT technique to multiple failures we need to con-
sider the definition of multiple failures from a timing perspective. If we consider a
failure and the resulting reaction of the ABFT algorithm, we can define a failure pe-
riod as the time between the moment where the failure is detected, and the moment
where the algorithm has completely recovered its data, and is ready to continue the
factorization. This time interval contains the recovery of the MPI processes, as well as
the recovery of the user level data using the checksums, as presented in Section 5.4.4.
It is worth mentioning, that once the system has recovered, it reaches a state simi-
lar to a failure-free execution, and it is again ready to face subsequent failures. Thus,
as long as the failure-recovery periods do not overlap, the single failure scheme de-
scribed in the previous sections can survive any number of faults. We will show in
Section 7.5 that the number of subsequent faults has little impact on the accuracy of
the factorization.

In the rest of this section, we focus on the more demanding case of simultaneous,
overlapping failures. We use the following notations: an initial matrix of size M × N is
distributed on a process grid of P × Q, in a 2D Block Cyclic way, where blocks are of
size mb × nb (see Section 4.4). The multiple failure ABFT protocol takes an additional
parameter, F, denoting the maximal number of overlapping failures to tolerate, and
we consider the case of f ≤ F overlapping failures.

First, we note that the recovery algorithm works on block rows, so if failures happen
on processors that are located on different rows of the process grid, the recovery al-
gorithm can recover the missing blocks independently. However, in the worst case, all
failures happen on the same process row, resulting in f ≤ F missing blocks that must
be reconstructed from their checksums.

The idea of the algorithm is still to complement the initial data with a checksum.
As a first approximation, let us consider that failures do not hit the checksum part. To
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tolerate at most f failures, we need f checksum functions cki, 1 ≤ i ≤ f : mb×(nb·Q) 
→
mb × nb that maps Q data blocks to a checksum block, so that the f combinations
(b1, b2, . . . , bQ) −→ cki(b1, b2, . . . bQ), 1 ≤ i ≤ f form a linear system of f independent
equations. In the case of one fault, we usually take ck1 = sum. For cki, i > 1, we can
take weighted sums (see section 4.1).

When a failure occurs, the missing blocks can be recovered by solving the linear
system of equations, assuming that the checksum blocks are not lost. When failures
introduce the loss of a checksum block, its data must be recovered. In the case of a
single failure, we used the replication strategy: the checksum blocks are replicated on
consecutive (thus independent) processors of the process grid, allowing to recover the
missing checksum data when necessary.

In the case of multiple overlapping failures, the best strategy consists in ensuring
that for any combination of failures, enough checksum blocks will survive to solve
the linear system of equations with matrix data blocks (i.e., nonchecksum blocks) as
unknown. Once this system is solved, the missing checksum blocks are then restored
by recomputing the checksum value from the recovered data. For protection against F
failures, at least F checksum blocks must remain available per group of Q blocks, so
that the system remains fully determined.

If it were possible to store the checksum blocks on another row in the process grid,
then F checksums per Q blocks would be sufficient. If fp failures hit processes in the
row p of the process grid, then, at most F − fp checksum blocks would be damaged,
meaning that fp checksum blocks would in all cases remain available to restore the fp
lost blocks. Unfortunately, we recall that this approach is not possible, as the check-
sums have to be stored on the same process row as the block they protect for applying
ABFT updates: the same mathematical transformation (as well as pivoting) has to be
applied on the trailing matrix blocks and the checksum blocks during the update. If
the checksums are offset, a different set of transformations would be applied (pertain-
ing to the update of the next rows in the real matrix), and the checksum invariant
property would be lost.

As a consequence, let us consider only the case where the Q processes of a particular
row in the process grid store the data blocks and their associated checksums. Since
F ≥ f ≥ 0, 2F − f ≥ f ; thus, by considering 2F consecutive processes to store the
different cki checksums, one can ensure that at least f checksum blocks will survive,
allowing to solve the linear system of f equations to recover the matrix data. This also
implies that 2F ≤ Q, to prevent checksum blocks to be lost simultaneously by cycling
over the process grid. Note that with K < 2F checksum blocks to cover Q processes,
this strategy would be subject to a risk of nonrecoverable failure scenarios: if f = F,
then less than K − f < f checksum blocks can survive the overlapping failures, and
simultaneously, f matrix blocks belonging to the same segment of Q blocks can be lost.
Because f equations are necessary to solve the corresponding system, and less than
K − f < f blocks would be available, 2F checksum blocks are sufficient and necessary.

The protocol stores one such set of 2F checksum blocks per Q blocks of original data
in the row, so in total, the memory overhead of ABFT to tolerate at most F ≤ Q/2 faults
on a single block-row is 2F

Q
N
nb blocks of mb×nb elements (that is 2F·N·mb

Q elements). On

the whole matrix, this corresponds to 2F·M×N
Q elements.

Compared to the case with one failure, f failures also introduce a computational
overhead since we must solve the linear equation systems to recover the original data.
Fortunately, these systems are small: f equations of (Q + 1) blocks each, and can be
solved locally, where the blocks must be stored, after the corresponding data has been
gathered.
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7. EVALUATION

In this section, we evaluate the performance of the proposed fault tolerant algorithm
based on ABFT and reverse neighboring checkpointing. For a fault tolerant algorithm,
a crucial consideration is the overhead added to failure free execution rate, due to
various fault tolerance mechanisms such as checksum generation, checkpointing and
extra flops. An efficient and scalable algorithm will incur a minimal overhead over
the original algorithm while enabling scalable reconstruction of lost dataset in case of
failure. A fault-tolerant strategy that has minimal failure free impact is more prone to
being deployed by default, it then has the opportunity to help users survive occasional
failures and improve effective throughput.

For experimental runs, we use the NSF Kraken supercomputer, hosted at the
National Institute for Computational Science (NICS, Oak Ridge, TN) as our testing
platform. This machine features 112,896 2.6GHz AMD Opteron cores, 12 cores per
node, with the Seastar interconnect. At the software level, to serve as a comparison
base, we use the non fault tolerant ScaLAPACK LU and QR in double precision with
block size NB = 100. The fault tolerance functions are implemented and inserted as
drop-in replacements for ScaLAPACK routines.

In this section, we first evaluate the theoretical overhead in the form of extra mem-
ory usage and computations, then show experimental results on Kraken to assess the
effective performance of the method.

7.1. Complexity Analysis

7.1.1. Extra Storage. Checksum takes extra storage (memory), but on large scale sys-
tems, memory usage is usually maximized for computing tasks. Therefore, it is prefer-
able to have a small ratio of checksum size over matrix size, in order to minimize the
impact on the memory available to the application itself. For the sake of simplicity, and
because of the small impact in term of memory usage, neither the pivoting vector nor
the column shift are considered in this evaluation.

Different protection algorithms require different amounts of memory. In the follow-
ing, we consider the duplication algorithm presented in Section 4.5.2 for computing the
upper memory bound. The storage of the checksum includes the row-wise and column-
wise checksums.

For an input matrix of size M × N on a P × Q process grid, the memory used for
checksum (including duplicates) is M × N

Q × 2. The ratio Rmem of checksum memory

over the memory of the input matrix, equals to 2
Q , becomes negligible with the increase

in the number of processes used for the computation.

7.1.2. Extra Computations. Due to the introduction of checksum, operations counts and
communication have been increased, as update operation span on a larger matrix com-
prised of the original trailing matrix and the checksums. During checkpointing and
recovery, extra workload is performed and this all together leads to higher computing
complexity than the original implementation in ScaLAPACK.

For simplicity of description, we first consider square data matrices of size N × N
distributed on a square grid Q × Q. The operation count ration for LU factorization
without and with checksum is

R =
2
3N3 − 1

2N2 + 5
6N

2
3 (N + N

Q )3 − 1
2 (N + N

Q )2 + 5
6 (N + N

Q )

=
2
3 − 1

2N + 5
6N2

2
3 (1 + 1

Q )3 − 1
2N (1 + 1

Q )2 + 5
6N2 (1 + 1

Q )
. (12)
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Fig. 8. Weak scalability of FT-LU: performance and overhead on Kraken, w.r.t. non fault tolerant LU.

Clearly limQ→+∞ R = 1. Hence for systems with high number of processes, the extra
flops for updating checksum columns is negligible with respect to the normal flops
realized to compute the result.

In addition, checksums must be generated, once at the start of the algorithm, the
second time at the completion of a Q-wide panel scope. Both these activities account
for O(N2) extra computations (but enjoy excellent parallelism).

7.2. Overhead without Failures

Figure 8 evaluates the completion time overhead and performance, using the LU fac-
torization routine PDGETRF. The performance in Tflop/s of both the original and fault
tolerant version are presented in bar graphs. This experiment is carried out to test
the weak scalability, where both the matrix and grid dimension doubles. The super-
imposed curves present the same data as overhead relative to the non-fault-tolerant
algorithm in ScaLAPACK. As a reminder, the same overall number of processors is
employed with or without fault tolerance: the same processors that carry the factor-
ization computation also carry the checksum storage and maintenance operations. The
result outlines that as the problem size and grid size increases, the overhead drops
quickly and eventually becomes negligible. At the matrix size of 640, 000 × 640, 000,
on 36, 864 (192 × 192) cores, both versions achieved over 48Tflop/s, with an overhead
of 0.016% for the ABFT algorithm.

As a side experiment, we implemented the naive vertical checkpointing method dis-
cussed in Section 5.2. As the left factor is touched only once during the computation,
the approach of checkpointing the result of a panel synchronously can, a-priori, look
sound. However, as the checkpointing of a particular panel suffers from its inability
to exploit the full parallelism of the platform, it is subject to a derivative of Amdahl’s
law, its parallel efficiency is bound by P, while the overall computation enjoys a P × Q
parallel efficiency: its importance is bound to grow when the number of computing
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Fig. 9. Comparison between Q-parallel and per-panel L-checkpoint overhead.

resources increases. As a consequence, in the experiments, presented in Figure 9, the
time to compute the naive checkpoint dominates the computation time and impose un-
acceptable overhead even for modest number of cores. On the other hand, the hybrid
checkpointing approach exchanges the risk of a Q-step rollback with the opportunity
to benefit from a P × Q parallel efficiency for the panel checkpointing. Because of this
improved parallel efficiency, the hybrid checkpointing approach benefits from a com-
petitive level of performance, that follows the same trend as the original non fault
tolerant algorithm.

7.3. Recovery Cost

Beside the “curb” cost of protection against failures, another interesting performance
metric is the cost of recovering from a failure. In the Q-parallel hybrid scheme, there
are two cases for the recovery. The first one is when failure occurs right after the
reverse neighboring checkpointing of Q panels. At this moment the matrix is well pro-
tected by the checksum and therefore the lost data can be recovered directly from the
checksum. We refer to this case as “failure on Q panels border.” The second case is
when the failure occurs during the reverse neighboring checkpointing and therefore
local snapshots have to be used along with refactorization to recover the lost data and
restore the matrix state. This is referred to as the “failure within Q panels.”

Figure 10 shows the overhead from these two cases for the LU factorization, along
with the no-error overhead as a reference. In the “border” case, the failure is simulated
to strike when the 96th panel (which is a multiple of grid columns, 6, 12, · · · , 48) has
just finished. In the “nonborder” case, failure occurs during the (Q + 2)th panel factor-
ization. For example, when Q = 12, the failure is injected when the trailing update
for the step with panel (1301,1301) finishes. From the result in Figure 10, the recovery
procedure in both cases adds a small overhead that also decreases when scaled to large
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Fig. 10. Weak scalability of FT-LU: runtime overhead on Kraken when failures strike at different steps.

problem size and process grid. For largest setups, only 2-3 percent of the execution time
is spent recovering from a failure.

7.4. Extension to Other factorization

The algorithm proposed in this work can be applied to a wide range of dense matrix
factorizations other than LU. As a demonstration we have extended the fault toler-
ance functions to the ScaLAPACK QR factorization in double precision. Since QR uses
a block algorithm similar to LU (and also similar to Cholesky), the integration of fault
tolerance functions is mostly straightforward. Figure 11 shows the performance of QR
with and without recovery. The overhead drops as the problem and grid size increase,
although it remains higher than that of LU for the same problem size. This is expected:
as the QR algorithm has a higher complexity than LU (4

3N3 v.s. 2
3N3), the ABFT ap-

proach incurs more extra computation when updating checksums. Similar to the LU
result, recovery adds an extra 2% overhead. At size 160,000 a failure incurs about
5.7% penalty to be recovered. This overhead becomes lower, the larger the problem or
processor grid size considered.

About tall and skinny matrices. One of the major use cases of the QR factorization in-
volves computing the factorization of tall and skinny matrices, for which the vertical
dimension M is much larger than N. In this section we consider the computational
overhead of ABFT protection in this case.

When M ≥ N, the normal operation count of the QR factorization is

2MN2 − 2
3

N3 + MN + N2.
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Fig. 11. Weak scalability of FT-QR: runtime overhead on Kraken when failures strike.

An overestimate of the number of flops performed to update the checksum can be
obtained by substituting N by its extended value including checksum blocks N + N

Q . M
remains unchanged. The ratio is then bound by

R = 2MN2 − 2
3N3 + MN + N2

2M(N + N
Q )2 − 2

3 (N + N
Q )3 + M(N + N

Q ) + (N + N
Q )2

.

Similarly to LU, limQ→+∞ R = 1. However, when M is much larger than N, P must
also be larger than Q in order to preserve an adequate load balance between the pro-
cesses. It is therefore expected that the overhead ratio of ABFT for the block QR fac-
torization applied on tall and skinny matrices would decrease at a slower rate when
increasing the size of the target system. At the extreme, if one scales only the M dimen-
sion of the matrix, the ratio of additional computation incurred by ABFT protection
would remain stable (instead of decreasing with system size).

One observation that diminish the practical impact of this issue lies in the fact
that the standard block QR factorization underperforms in such extreme conditions;
as the matrix becomes increasingly tall, more time is spent in the poorly parallel
PDGEQR2 operation on the panel, while the time spent in flop rich trailing matrix
updates becomes insignificant. Different algorithms, such as the hierarchical QR fac-
torization [Cosnard et al. 1986] or communication avoiding QR [Demmel et al. 2012]
should be employed when facing very tall and skinny matrices; rendering these signif-
icantly different algorithms fault tolerant is beyond the scope of this article.

7.5. Numerical Stability

Direct factorizations are backward stable, meaning that slight perturbation introduced
by round-off errors are not amplified by the algorithm, and that the accuracy of the
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Fig. 12. Variation of result accuracy depending on temporal distribution of an increasing number of inde-
pendent failures. 16x8 process grid, normalized to machine precision ε=1.1e-16.

final result mostly depends on the condition number of the input matrix. ABFT re-
covery is based on matrix summation, which is also backward stable, henceforth, the
results obtained from execution containing failures and recovery are theoretically of
good quality as well. In this section, we illustrate with some empirical measurements
that not only recovery is backward stable, but that under the impact of massive num-
ber of failures, the factorization continues to deliver excellent stability (as predicted by
the theory), but also that the solution of a linear system using the resultant factoriza-
tion is not impacted in any meaningful way.

In the following experiments, we compute the QR factorization of a matrix, under
the protection of ABFT checksums (with Q-parallel checkpoint of L). We introduce an
increasing number of failures. Failures are nonsimultaneous, a new failure is intro-
duced only after the previous recovery is entirely completed. We observe the behavior
when failure position and timing varies.

We measure the impact on numerical quality of the factorization by computing four
different metrics. The QR factorization is applied on an input matrix A, randomly gen-
erated with the pdmatgen routine from ScaLAPACK testings, the condition number of
the resultant matrix is around 1e6. The norm of the element-wise difference between
the QR factorization of A and its initial state, ‖A−QR‖2

N‖A‖2
, gives the first evaluation of the

quality of the resultant factorization under the stress of errors. Then, we generate X0
and B so that B = A × X0. The solution X of the linear system AX = B is computed
using the result of the QR factorization of A, so that we can compute the backward
error, ‖B−AX‖2‖A‖‖X‖2

. To put the results in perspective, all norms are divided by the machine
precision ε = 1.1102e−16. We also compute the number of identical digits between the
corrected solution X and the solution without ABFT Xnoft, which is given by the log of

the forward error −log(
‖Xnoft−X‖2
N‖Xnoft‖2

), using Xnoft as the “correct” solution rather than the
real solution X0.

In Figure 12, we consider three temporal repartitions of failures. In the Uniform
strategy, the iterations of the algorithm are divided into f +1 equal intervals, separated
by f failures. In the Early strategy, a failure is introduced in every panel scope (said
otherwise every Q × NB iterations), starting from iteration 1, until f failures have
been introduced. The Late strategy is symmetrical: f failures are introduced during
the f latest panel scope at the end of the execution.

Each group of bar presents the results for a given matrix size, and within such a
group, each bar denotes a different number of injected non-overlapping failures (and
corresponding recoveries). The first general observation is that accuracy of result im-
prove with matrix size, which is a known property of direct factorization algorithms.
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Fig. 13. Variation of result accuracy depending on spatial distribution (process grid position of the impacted
processor) of an increasing number of independent failures. 16x8 process grid, normalized to machine preci-
sion ε=1.1e-16.

Even when injecting failures, this property continues to hold. Similarly, both the qual-
ity of the QR factorization and the solution of the linear system continue to behave
similarly under the stress of failures. For a given problem size, each individual failure
(and resultant round-off error during recovery) adds a small perturbation to the accu-
racy of the result; generally, the accuracy loss increases linearly with the number of
recoveries during the run. However, the growth rate of the error when the number of
failures increases is very low, and all obtained solutions are still of excellent quality.

Regarding the effect of temporal repartition of failures, one can note that failures
happening early during the factorization have less impact than failures happening at
the end of the factorization. Especially more so for small matrices. The explanation
comes from the fact that the QR algorithm absorbs round-off error during its execu-
tion without failures, so in effect, round-off errors introduced early during the run get
corrected by the normal unfolding of the QR algorithm on the remainder of the ma-
trix. For failures that arise at the end of the computation, there is no such opportunity
for self correction; the case is analogous to concentrating errors in the factorization
of a smaller matrix (that has not yet been factorized), which, as demonstrated by the
result, yields more impact on accuracy (see the case for N<25K). The Uniform repar-
tition, which more closely depicts a random distribution of failures, is subject to a
medium level of perturbation, compared to Late error distribution. The difference is
most important on small matrices. For larger matrices, results tend to converge to a
very small amount of precision loss, especially in terms of backward error.

We also consider three positional repartitions of failures, in Figure 13. In the One
strategy, the failure is always introduced on processor (1, 1) in the PxQ=16x8 process
grid. As this strategy repeatedly damages the same blocks for each subsequent fail-
ures, it minimizes the number of blocks where recovery injects round-off errors, for a
given number of failures. In the P strategy, failures are affecting processors along the
vertical direction of the process grid: a new failure is introduced on processor (p, 1)
when the previous one impacted (p − 1, 1), starting from (1, 1). Similarly, in the Q
strategy, failures affect processors along a row of the process grid, damaging proces-
sors (1, q). In these strategies, with a sufficient number of failures, all blocks from
some column or row of the matrix are destroyed and recovered at least once, a stressful
situation.

As expected, the One failure distribution imparts a very limited accuracy loss.
After the initial loss of accuracy resulting from the first failures, adding supplementary
failures impacting the same blocks has no effect on the quality of both the factoriza-
tion and solution. At the other extreme, the P repartition of errors is the most stress-
ful scenario. While other scenarios impart a maximum of 8 failures, we inject up to
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Fig. 14. “Forward error” assuming the correct solution is the approximate solution computed w/o fault
tolerance; this is an estimate of the number of identical digits in both solutions. 16x8 process grid;
ε=1.1e-16.

16 failures in the P scenario, so that all blocks of the impacted columns are destroyed
and restored at least once over the course of the factorization. If we limit the analysis
to less than 8 failures, the accuracy loss is comparable to that experienced by the Q
scenario, however, linear growth factor per failure is higher. As failures concentrate on
the same columns, the computation of the householder reflectors is impacted, which
further disseminates the rounding errors. When injecting over 8 failures, the growth
of the round-off error stops being linear with the number of failure, but oscillates in a
more chaotic fashion. However, as observed for larger matrix sizes, a predictable be-
havior can be achieved again for matrices as small as N=32K, for which 16 failures
during the small runtime (up to 310s, depending on the scenario), and at a small scale
(128 nodes), is a very pessimistic scenario. In all cases, even when considering fail-
ure frequency well beyond reasonable expectations, the quality of the solution is well
within acceptable range, two orders of magnitudes below the typical quality threshold
of 100 for this type of random matrices. For larger matrices, the backward errors is at
most doubled when introducing 16 errors in the worst spatial distribution.

The last set of experiments, presented in Figure 14, investigates the difference be-
tween the solution as computed by the ABFT QR, and by the original QR algorithm.
Some science disciplines rely on algorithms that are chaotic in nature. As a conse-
quence, a small deviation in the quality of the solution can result in correct, but widely
different outcomes for the complete simulation at hand (for example, climate simula-
tion is very sensitive to initial conditions). The closer the ABFT recovered result is
to the original solution, the more reproducible and predictable such type of unstable
simulations are. The set of graphs present the distance between Xnoft, the solution
without fault tolerance, and X the solution computed while sustaining failures. As a
reminder, the condition number of the input matrices K(A) is in the order of 106. As a
consequence, it is expected that the result looses up to 6 digits of accuracy. In practice,
the forward error is smaller, and the typical accuracy loss is only 4 digits. For 0 fail-
ures, the difference between Xnoft and X is also the forward error, and illustrates the
typical difference to be expected by running the same algorithm on a different hard-
ware platform or software version (the difference in this case comes from the ordering
of commutative operations inside MKL GEMM, which is different when the update is
applied to a different matrix size). It is indeed notable that the quality of the solu-
tion without failures can vary depending on matrix size, number of processors, data
distribution, and even underlying communication patterns employed within the MPI
implementation of collective operations, and chaotic algorithms already have to cope
with this possibility to obtain reproducible results on different deployments.

When failures are recovered, the difference between Xnoft and the recovered X is in
most cases very small, in the same order of magnitude as the forward error. For some
matrix sizes, the recovered solution is sometimes closer to the real solution than the
non fault tolerant algorithm (as is the case N=48K on the Early-Q error repartition).
This may seem advantageous at first glance, but it may indicate that the difference
between the recovered solution and the non-fault-tolerant solution is actually large. In
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some rare instances, the distance between the two computed solutions reaches over a
full significant digit. While the recovered solution is always perfectly acceptable, it is
more variable than the original algorithm solution would be. There is no clear pattern
driving the appearance of more distant solutions. Overall, the supplementary uncer-
tainty on the result is measurable, but is only slightly larger in magnitude compared
to the uncertainty from running on a different hardware platform. In this set of exper-
iments, trimming all results to the 10 significants digits expected from the condition
number of the matrices (by padding the remainder of the mantissa with 0, as an ex-
ample) would achieve perfectly reproducible results in all cases.

8. CONCLUSION

In this article, by assuming a failure model in which fail-stop failures can occur any-
time on any process during a parallel execution, a general scheme of ABFT algorithms
for protecting one-sided matrix factorizations is proposed. This scheme can be applied
to a wide range of dense matrix factorizations, including Cholesky, LU and QR. A sig-
nificant property of the proposed algorithms is that both the left and right factorization
results are protected. ABFT is used to protect the right factor with checksum gener-
ated before, and carried along during the factorizations. A highly scalable checkpoint-
ing method is proposed to protect the left factor. This method cooperatively reutilizes
the memory space originally designed to store the ABFT checksum, and has mini-
mal overhead by strategically coalescing checkpoints of many iterations. An extended
method to tolerate multiple simultaneous failures is described. Large scale experimen-
tal results validate the design of the proposed fault tolerance method by highlighting
a decreasing overhead for both LU and QR, and thus a highly scalable approach. The
accuracy of the method is also investigated, and demonstrated to remain similar to the
original version of the algorithm, even when multiple failures arise in a short inter-
val. In future works, models could be designed to investigate the number of protective
checksum blocks that optimizes the runtime expectation considering the trade-off be-
tween the cost of extra computation and the increased probability of multiple failures
when the number of nodes is very large.
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